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THE STEELPAN AS A SYSTEM OF NON-LINEAR
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This paper is the third in the series on this topic. In the earlier papers, the dynamics of
the steelpan notes were developed as systems of non-linear mode-localized oscillators which
can show note–note and note–skirt coupling. The tonal qualities of a note depend on the
coupling parameters and damping coefficients. Here, the inverse problem of parameter
estimation is presented for notes that do not show coupling to other subsystems of the
instrument.
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1. INTRODUCTION

In earlier papers [1, 2] (when appropriate, these references may be referred to as Part I
and Part II respectively) the physical structure of the steelpan was described and
an examination made of the responses of the notes and other subsections to impacts
produced by striking the notes with the stick (mallet). Each note was modelled as a
non-linear system for which the governing equations for note vibrations contained linear
and quadratic terms. Quadratic non-linearities arise from the curvature of the notes, which
are formed as shallow shell-like domes on the indented face of a steel drum. The exchange
of energy between resonances on a note produces amplitude as well as frequency
modulations.

This paper is concerned with the specific inverse problem of estimating the parameters
for the analytical model developed for the steelpan in references [1] and [2]. This work
should add to the body of knowledge on inverse problems of vibrating systems (see, for
example, Lancaster and Maroulas [3], Starek and Inman [4, 5] and the review papers by
Gladwell [6, 7]) and to the area of model updating (see the survey by Mottershead and
Friswell [8]).

2. THEORETICAL DEVELOPMENT

Consider a small element of area dA at some arbitrary position r on the note. To describe
the vibration of such an element, a general deflection function is sought which describes
the non-linear modes of the system. To satisfy this requirement, the procedure of references
[1] and [2] is followed by defining, for an arbitrary element, a deflection function

w(r, t)= s
a

n=1

un (t)Vn (r), (1)
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where Vn (r) are appropriate spatial functions (mode shapes) satisfying the boundary
conditions of the note, n is the mode number, and un (t) are unknown functions of time
only.

As in reference [1], the governing equation for the free vibrations on the steelpan notes
can be expressed by

ün +v2
n un + o$2mn u̇n − s

a

j=1

s
a

k=1

aj, k, n uj uk %=0, (2)

where un are the displacements; the dots refer to differentiation with respect to t; vn are
the frequencies of the system with v1 Qv2 Q . . . .Qva ; mn are the damping coefficients;
ajkn are constants with ajkn = akjn , and o is a small gauge parameter. Also as in reference
[1], the note is treated as a 3-DOF system in which the second mode (n=2) corresponds
to an internal resonance and the third mode (n=3) represents a combination resonance
(a heterodyne effect represented by the cross-modal term a*123 u1 u2). This is a sufficient
description, as the fourth and higher modes have been observed on the steelpan to be very
low in amplitude and will produce relatively weak interaction products in combination
resonances. The curvature of these shallow shell-like notes [9] gives rise to quadratic nature
of equation (2).

By using the multi-time scale procedure (Nafeh and Mook [10] and Nafeh [11]) it can
be shown, as in reference [1], that the general solution of equation (2) to order o0 takes
the form un0 =An (t1) eivn t0 +CC, where And = 1

2and eifnd, with and and fnd being functions of
the slow time t1 (tn = ont) and representing the amplitude and phase of the nth Fourier
component of the displacement respectively. By combining this solution with the o1

solution, it was also shown in reference[1] that the (a1, a2, a3, f1, f2, f3) phase flow is
governed by

a'1 =−m1 a1 +
a*121

4v1
a1 a2 sin g1 +

a*231

4v1
a2 a3 sin g2,

a'2 =−m2 a2 −
a112

4v2
a2

1 sin g1 +
a*132

4v2
a1 a3 sin g2,

a'3 =−m3 a3 −
a*123

4v3
a1 a2 sin g2,

f'1 =−
a*121

4v1
a2 cos g1 −

a*231

4v1

a2 a3

a1
cos g2,

f'2 =−
a112

4v2

a2
1

a2
cos g1 −

a*132

4v2

a1 a3

a2
cos g2,

f'3 =−
a*123

4v3

a1 a2

a3
cos g , (3a–f)

where a*jkn = ajkn + akjn , the prime denotes d/dt1, and

g1 =f2 −2f1 + s1 t1, g2 =f3 −f2 −f1 + s2 t1, (4)

with the detuning parameters s1 and s2 describing the closeness of the resonant frequencies:

v2 =2v1 + os1, v3 =v1 +v2 + os2. (5)

The parameters vn , mn , s1, s2 and ajkn allow the full range of frequency- and
amplitude-modulation features observed on a steelpan to be modelled mathematically. A
practically feasible procedure is therefore sought that may yield those parameters from the
time-history data of individual notes. This is the inverse problem.
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2.1.  

After some algebraic manipulations of equations (3a–c) to eliminate the sines, one
arrives at the equation

1
2

d
dt1

[a2
1 + n2 a2

2 + n3 a2
3 ]=−[m1 a2

1 + m2 n2 a2
2 + m3n3 a2

3 ]. (6)

where

n2 =
v2

v1

a*121

a112
, n3 =

v3

v1 0a*132 a*121

a*123 a112
+

a*231

a*123 1. (7)

A two-mode version of equation (6) has been discussed by Sethna [12]. It is not possible
to obtain a complete general solution to equation (6) for the case m1 $ m2 $ m3. However,
a reasonable simplification is to assume equal damping for the three modes; i.e.,
m1 = m2 = m3 =

def
m. This assumption is justified by the following consideration. Damping in

metals at low stress levels is due primarily to magnetoelastic hysteresis which, in the present
frequency range of interest, is independent of frequency [13]. The steel used in the
manufacture of steelpans exhibits little internal damping because of the low stress levels
involved during a vibration cycle. Acoustic radiation and energy exchanges across the note
edges also affect the damping.

The first modes for the notes on the steelpans are all located in the frequency range
69·3 Hz (C#

2 ) on the low end, to 1396·9 Hz (F6) on the high end. For the most part, it is
only the first three modes of vibration on each note that are of sufficient amplitude to be
of significant musical interest. On any particular note therefore, the frequenct range over
which the damping is required is somewhat limited. Observation of many steelpan tones
shows that the duration of these tones are all of the order of one second. While this latter
observation, taken alone, cannot accurately define the damping coefficients for this
non-linear instrument, it does imply that the degree of damping is not expected to be highly
variable over the frequency range of the instrument.

With the equal damping assumption, equation (6) can be integrated to give

E(t)=E(0) e−2mt, (8)

where

E(t)= a2
1 + n2 a2

2 + n3 a2
3 (9)

and t (in units of the time scale t1) is the time measured from the instant that E maximizes.
The latter occurs some time after the stick has lost contact with the note.

Were the damping coefficients of the second and third modes to be written as
m2 = m1 + dm2, m3 = m1 + dm3, to account for differences in damping coefficients, then
equation (8) would have to be replaced by

E(t)=E(0) e−2[m1 t+ g(t)]

with

g(t)=g
t

0

dm2 n2 a2
2 + dm3 n3 a2

3

a2
1 + n2 a2

2 + n3 a2
3

dt', (10a, b)

where t' is a dummy time variable over the interval [0, t]. If dm2 and dm3 are significantly
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different from zero, then E(t) will not follow an exponential law. It ought to be possible
to test, empirically, the applicability of these equations to the steelpan notes.

From equations (8) and (9),

a2
1

B1
+

a2
2

B2
+

a2
3

B3
= e−2mt, (11)

where

B1 =E(0), B2 =
E(0)
n2

, B3 =
E(0)
n3

. (12a–c)

Equation (11) shows that, under equal damping, the modal amplitudes an are not
independent of each other, but that a weighted sum of the squares of the modal amplitudes
should follow an exponential decay law. For a conservative system (m=0), the solutions
lie on an ellipsoid in the six-dimensional phase space (a1, a2, a3, f1, f2, f3). For a
dissipative system, however, such as the notes on the steelpan, this ellipsoid slowly
collapses as the tone decays.

From an energy standpoint, equation (11) describes the partition of energy amongst the
three modes.

2.2. – 

Equations (3d–f) can be reduced to

f'1 a2
1 (t)−

v2

v1

a*121

a112
f'2 a2

2 (t)−
v3

v1 $a*231

a*123
−

a*132 a*121

a*123 a112 % f'3 a2
3 (t)=0. (13)

Equation (13) shows the relationship of the frequency modulations f'n to the amplitudes
an (t). Examples of this frequency-amplitude dependence as found on the steelpan, were
given in the experimental and numerical data of reference [1].

2.3.     

Before proceeding with the inverse problem, the observation data are defined.

2.3.1. Observation data
The data provided by observation of the steelpan are in the form of displacement (or

velocity) time histories of the vibrating notes. The notes are set into vibration by impact
using a standard rubber-tipped stick. Velocity measurements can be made using a set-up
consisting of a small electrodynamic velocity tranducer, low-noise amplifier, anti-aliasing
filter, A/D converter and a desktop computer. This raw data can be analyzed using the
Short-Time-Fourier-Transform (STFT) (discussed fully in Part I) to produce complex
spectral components S{n}

u̇ for the velocity u̇. These velocity STFT components are linearly
related to the STFT S{n}

u for displacement u by, S{n}
u̇ =−jvn S{n}

u . In the present analysis,
there exists the correspondence an 0 =S{n}

u =, fn 0 arg (S{n}
u ). The inverse problem based on

this correspondence is given below.

2.3.2. Inverse parameter value problem
Given the observation data in the above form, determine the values of

(vn , mn , s1, s2, ajkn ).
Remark. An obvious question that arises is that of the uniqueness of (vn , mn , s1, s2, ajkn )

recovered from the observation data.
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To see more clearly what parameters can be determined, equation (10) must be written
in the more explicit form

a2
1(t)− a2

1 (0) e−2[m1 t+ g(t)] +
v2

v1

a*121

a112
[a2

2 (t)− a2
2 (0) e−2[m1 t+ g(t)]]

+
v3

v1 0a*231

a*123
+

a*132 a*121

a*123 a112 1[a2
3 (t)− a2

3 (0) e−2[m1 t+ g(t)]]=0. (14)

From equations (13) and (14), one sees that the a parameters cannot be determined
individually but only in the combined form of ratios a*121 /a112, a*132 /a*123 and a*231 /a*123. This,
at least partially, answers the question on the uniqueness of the a parameters.

The use of the slow time t (=ot) in equation (14) means that in practice, where it is
the real time (or fast time) t that is measurable, only the products omn can be determined
from the experimental data. Similarly, for the detuning parameters, only the products osn

can be determined.
The frequencies vn (and frequency modulations) are easily recovered by maximizing the

STFT’s as described fully in Part I and Part II. These frequency values will be unique for
each note.

2.3.3. Minimization and discretization
Values for omn , (v2 /v1)/(a112 /a*121) and (v3 /v1) (a*132 a*121 /a*123 a112 + a*231 /a*123) are

determined from equations (10) and (14) by minimizing [E(t)−E(0) e−2[om1 t+ g(ot)]]2. From
equation (13) one can define two functions, F1 (t)=f'1 a2

1(t) and
F2 (t)=−Af'2 a2

2 (t)−Bf'3 a2
3 (t) which, on a suitable time plot, should appear as ‘‘mirror

images’’ once the values for A and B are obtained by minimizing [F1 (t)+F2 (t)]2. A
second value for (v2 /v1) (a112 /a*121) is found from A, while a value for (v3 /v1){a*231 /a*123

− a*132 a*121 /a*123 a112} can be obtained from B. As will be seen in the examples to follow, the
matching of the mirror image functions F1 (t) and F2 (t) can be a very sensitive check on
the correctness of the analyzing frequencies vn used in the STFT analysis.

Experimental data will normally be obtained or stored in discretized form as a result
of sampling. The real functions E(t) and Fm (t) (m=1, 2) will be represented by the
sequences

Ej , Fm, j , j=0, . . . , N−1,

where N represents the number of data points in the whole sample. The procedure
therefore requires the minimization of the residuals

KE =
1
N

s
N−1

j=0

[Ej −E0 e−2(jom1 dt+ gj )]2, KF =
1
N

s
N−1

j=0

[Fi, j +F2, j ]2, (15a, b)

where dt is the sampling interval. Time derivatives of the phase are estimated using the
phase change over successive discrete time samples.

2.3. 

On completing the minimization procedure, the parameters and parameter ratios can
be used to synthesize the steelpan response during the period of free vibrations (more
precisely, from the instant that E maximizes to the end of the tone).

It was shown in Part I, that the tonal structure (frequency and amplitude) depends on
the manner in which the stick impact is delivered. When the note is played with more
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vigour, the level of the second mode increases significantly in comparison with the first
mode. The note synthesis must therefore take this into account. Following the procedure
adopted in Parts I and II, a note judged to have been played at the forte level (loud) can
be simulated in the numerical experiments by assuming an initial amplitude for the first
mode as a1 (0)=1. Similarly, a note at the piano level (soft) will have a1 (0)=0·5.

The non-uniqueness of the a-parameters allows a wide range of values that may be
acceptable in the synthesis. However, the a-ratio values determined in the minimization
procedure must be satisfied. In addition, the time scale in the synthesis is arbitrary, but
in this case it is necessary to keep the ratio of the detuning parameters consistent with the
results obtained in the minimization procedure.

3. EXAMPLE APPLICATIONS

The algebraic simplicity of the results in the previous section allow for the
straightforward application of the inverse procedure to the vibrations of the steelpan notes.
Two examples are taken from the example set of Part I. The first example corresponds
to a note for which there is a weak second mode and negligible higher modes, while in
the second example there is a strong second mode and a comparatively weaker third mode.
These examples are typical of those found on this instrument. Note excitation was done
in the normal way for this instrument, by striking the note with the stick and velocity
recordings are made in the manner described earlier for observation data.

Derivatives with respect to real time t replace derivatives with respect to t, since the
factor o cancels out across equation (13). The sampling rate for the data was 11 kHz.
Sampling faster produced no additional information. The procedures for setting the
parameters for the Gaussian window and the variance in the STFT computations were the
same as those used in Part I. For the synthesis of the steelpan responses, equations (3a–f)
were integrated numerically using a fourth order Runge–Kutta routine which produced
the discretized values for an and fn at time steps of 0·1.

Minimization of equation (15a) was first done assuming different decay coefficients and
then by assuming equal decay coefficients with gj set to zero. It was necessary to perform
separate minimization for each case because of the non-linear nature of the problem.

3.1.  F#
4     

The tone structure (modal components) for the F#
4 (369·99 Hz) note, played forte, is

shown in Figure 1. This particular note shows a modulated first mode component and a
weak, modulated, second mode. Higher modes were not present. Because of a small
mistuning of this note at the time of the experiment, STFT’s were maximized [1] at
f1 =367·3 Hz and f2 =743·2 Hz for a frequency ratio f2 /f1 (v2 /v1)=2·0234. The product
os1 =54·0 rad/s0 8·6 Hz.

E(t) reached a maximum some 13·8 ms after the stick struck this note. This time interval
is approximately five times the period of the first mode. The minimization of the residual
KE yielded the values om1 = om2 =3·17 s−1, a*121 /a112 =53·4 under the equal damping
assumption and om1 =3.15 s−1, om2 =3·27 s−1; a*121 /a112 =53·4 otherwise.

In Figure 2 the function E(t) from equation (8) is seen closely to follow the exponential
function E(0) e−2omt. In Figure 3 is shown the percentage deviation between E(t) defined
in equation (8) and E(t) according to equation (10). This deviation is less than half of one
percent for the first 0·55 s. At the end of this period E(t) has already decayed to less than
4 percent of its initial value. It is therefore reasonable to conclude that there is no
significant difference between the damping coefficients for the two modes on this note.
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Figure 1. Observation data for the F#
4 note in the form of Fourier components: (a) the amplitudes =Sn =; (b)

the phase angles arg (Sn ).

Minimization of the residual KF yielded the value a*121 /a112 =44·0. This value is some 21
percent lower than that obtained by minimizing KE . The mirror functions F1 (t) and F2 (t)
are plotted in Figure 4. While adjustments to the value of A (=(v2 /v1) (a112 /a*121)) in the
minimization process will produce changes to the magnitude of the function F2 (t), it will
not alter the form of F2 (t). There is a fair degree of detailed matching in the form of the
functions F1 (t) and F2 (t) seen in Figure 4. This suggests that the analytical model can be
applied with confidence to this musical instrument.

Figure 2. The functions E(t) (—) and E(0)e−2omt (- - -) for the F#
4 note.
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Figure 3. The percentage deviation between E(t) defined by equation (8) and E(t) defined by equation (10),
for the F#

4 note.

3.2. F#
4 

The non-linear response of the F#
4 note was modelled numerically by integrating

equations (3a, b, d, e) with the parameters a*121 =0·16, a112 =0·0033, os1 =0·01,
m1 =0·0006 and m2 =0·00062. The mean parameter ratio for a*121 /a112, obtained by
minimization of the residuals, is satisfied by these a-parameters. To simulate the note
played forte, the initial (dimensionless) displacement on the first mode was set at unity.
The simulated amplitudes a1 and a2 are shown in Figure 5(a), while the corresponding
phases f1 and f2 are shown in Figure 5(b). There is a marked similarity between the real
note vibration data of Figure 1 and the simulated results in Figure 5.

3.3.  Eb
4 

A more complex tone structure is shown in Figure 6 for the Eb
4 (311·1 Hz) note played

forte. To determine these components, the STFT’s were maximized with f1 =311·1 Hz,
f2 =624·0 Hz and f3 =930·6 Hz. The corresponding frequency ratios are f2 /f1 =2·006 and
f3 /f1 =2·991 with os1 0 1·8 Hz and os2 0−4·5 Hz.

Figure 4. The mirror functions F1(t) (—) and F2(t) (· · · ·) for the F#
4 note.
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Figure 5. Numerical simulation of the F#
4 note: (a) amplitudes; (b) phase angles.

On this note, E(t) reached a maximum 16·5 ms after the note was struck (approximately
five times the period of the first mode). The minimization of the residual KE yielded the
values omn =3·53 s−1 (n=1, 2, 3), a*121 /a112 =2·89 and (a*231 /a*123 + a*132 a*121 /a*123 a112)=1·24
under the equal damping assumption, and om1 =3·52 s−1, om2 =3·72 s−1, om3 =3·52 s−1,
a*121 /a112 =2·89 and (a*231 /a*123 + a*132 a*121 /a*123 a112)=1·24 otherwise (notice that both
analyses yield the same a-ratios). In Figure 7, the function E(t) from equation (8) is seen,
for this note also, to closely follow the exponential function E(0) e−2omt.

The deviation between E(t) defined by equation (8) for equal damping and E(t)
according to equation (10) is plotted in Figure 8. The absolute magnitude of this deviation
remains less than 0·2 percent for the duration of the tone. Here also, it is clearly
demonstrated that the equal damping assumption is applicable to the steelpan notes.

Minimizing the residual KF yielded the values a*121 /a112 =2·49 and (a*231 /a*123

− a*132 a*121 /a*123 a112)=0·54. As with the F#
4 note, the value for a*121 /a112 obtained by

minimizing KF is less than the value obtained by minimizing KE , this time by 16 percent.
Combining the two sets of results for the parameters, one also obtains the values
a*231 /a*123 =0·89 and a*132 /a*123 =0·14 or 0·12 (the latter values corresponding to
a*121 /a112 =2·49 or 2·89).

In Figure 9, the mirror functions F1 (t) and F2 (t) are plotted along with the contribution
G3 (t)=−Bf'3 a2

3 (t) (scaled up ×10) by the third mode to F2 (t). From Figure 9 it is clear
that, in this example, it is the second mode that largely determines the form of the function
F2 (t).

3.4. Eb
4 

The non-linear response of the Eb
4 note was modelled numerically by integrating

equations (3a–f) with the parameters a*121 =0·047, a112 =0·019, a*123 =0·007, a*231 =0·006,
a*132 =0·0009, m1 =0·00067, m2 =0·00067, m3 =0·00067, os1 =0·002 and os2 =−0·0048.
The parameter ratios obtained by minimization of the residuals are satisfied by these
parameters. To simulate the note played forte, the initial (dimensionless) displacement on
the first mode was set at unity.
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Figure 6. Observation data for the Eb
4 note in the form of Fourier components: (a) the amplitudes =Sn =; (b)

the phase angles arg (Sn ).

The simulated amplitudes a1 and a2 are shown in Figure 10(a) (compare with Figure 6(a))
while the corresponding phases for f1 and f2 are shown in Figure 10(b) (compare with
Figure 6(b)). Due to the small contribution of the third mode to F2 (t), as noted earlier,
the amplitude modulations on the simulated third mode did not closely match the
corresponding structure on the real data. The most likely reason for this behaviour is the
stronger contribution of cubic non-linearity to the third mode through internal resonance

Figure 7. The functions E(t) (—) and E(0)e−2omt (- - -) for the Eb
4 note.
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Figure 8. The percentage deviation between E(t) defined by equation (8) and E(t) defined by equation (10),
for the Eb

4 note.

than the contribution through combination resonance as assumed here. There are,
however, strong similarities between the real and simulated amplitude and phase structures
for the first two modes that dominated the dynamics of this note.

3.5.   STFT
To demonstrate the sensitivity of the present method to changes in the analyzing

frequency used in the STFT, the analyzing frequency for the second mode was reduced
from the optimized value of f2 =624·0 Hz to a new value of 623·4 Hz (a frequency
reduction of just under 0·1 percent) and the Fourier component for the second mode was
recalculated. With this being the only change to the analysis, the new results are shown
in Figure 11. There is now no matching of the mirror functions F1 (t) and F2(t). The form
of F2 (t) has changed completely. This change was brought about mainly by the phase
component f2 (t), as there were only very small changes to the amplitude a2 (t). In addition
to maximizing the STFT and minimizing the phase in the usual way [1], the matching of
these two mirror functions serves as a sensitive check on the accuracy of the mode
frequencies.

Figure 9. The functions F1(t), F2(t) and G3(t) for the Eb
4 note with mode 2 maximized at f2 =624·0 Hz.
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Figure 10. Numerical simulation of the Eb
4 note: (a) amplitudes; (b) phase angles.

3.6.    

In comparing these two notes, one ought to look at the ratio a112 /a*121, for which the
average value on the F#

4 note is 0·02, while on the Eb
4 note it is 0·37. This shows that in

both cases the coupling constant a112, which is a measure of the coupling of mode 1 energy
into mode 2, is less than a*121, which is a measure for the reverse coupling of energy from
mode 2 back to mode 1. The process of energy exchange is, however, much more effective
on the Eb

4 note. This accounts for the more complex structure obtained on this Eb
4 note and

explains its much greater brilliance (musically).

Figure 11. The functions F1(t) (—) and F2(t) (· · · ·) for the Eb
4 note with mode 2 maximized at f2 =623·4 Hz.
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4. CONCLUSIONS

The model parameters for the non-linear vibrations of the notes on the steelpan as
developed in the analysis of references [1] and [2] can be computed by the inverse process
developed here. It was verified that approximately equal damping exists for all the modes
on a note. Equal damping leads to the result that a weighted sum of the squares of the
modal amplitude should follow an exponential decay law. This decay law was found to
be closely obeyed on the two notes chosen as examples. Minimization procedures gave
estimates for the decay coefficients and the weights from which the a-parameter ratios were
computed. The synthesized tonal structures, using model parameters consistent with the
analysis, closely matched the real data.

In essence, the computations are relatively simple. After computing the STFT for the
tone signal (velocity or displacement time-history) the amplitude and phase data are used
in the expressions for the residuals KE and KF which are then minimized. The matching
of the two functions defining KF plays the additional role of a very sensitive check on the
accuracy of the analyzing frequencies used in the STFT computation.
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